
CS3485  
Deep Learning for Computer Vision

Lec 20/21: Attention, Transformers and ChatGPT



Announcements

■ Interesting application of stylegan: https://facemorph.me/

https://facemorph.me/


Announcements

■ Mega quiz next Monday:
● More questions: 40 to 50, 
● More time: 1hr, 
● More content: all of our course!
● More weight: worth 4 regular quizzes!

■ Reminder: lowest grade on regular quizzes will be dropped.
■ Finally, let’s finish the previous lecture!
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Deep Learning for Language Modeling

■ Besides Computer Vision, Deep Learning has had an 
(arguably larger) impact on Natural Language Processing:

Natural Language Processing (NLP) is the study of how 
computers can gain high-level understanding from 

language data, such as text and speech. 

■ This impact is now mostly driven by the Transformer 
Architecture, proposed in a ground-breaking 2017 paper 
called Attention is All You Need.

■ The transformer architecture is the basis for one of the 
most impactful deep learning solutions in the industry, 
ChatGPT, which we’ll also cover here.

■ To understand transformers, we start with Attention.

https://arxiv.org/pdf/1706.03762.pdf


Retrieval in Databases

■ The Attention Mechanism is the core operation in Transformers (analogously to how 
Convolution is core to CNNs), and emerged from the study of Databases.

■ In their simplest form, databases are collections of keys (k) and values (v). 
■ For example, a database D might consist of a list of pairs names like

 {(“Barclay”, “Andrew”), (“Chen”, “Li”), (“Barros”, “Luis”), (“Dubois”, “Nicole”)}, 

with the last name being the key and the first name being the value.
■ When retrieving info from D, the query (q) for “Barros” returns the value “Luis”, for 

example. We can call this hard (or exact) retrieval.
■ If the entry (“Barros”, “Luis”) were not in D, we could do a couple of things:

● Return “null” or “entry not found”.
● Return an approximate match, like “Andrew”, since “Barros” is somewhat similar to “Barclay”.
● Return a combination of values summed according to a weight function (the most values for the 

most similar keys will weight more). We shall call this strategy soft-retrieval.



Add example with numbers/vectors



Attention

■ Say D = {(k1 , v1), (k2 , v2),..., (kn , vn)} of keys ki and values vi. We can then define our 
softly retrieved value (or “Query Attention”) of a query q according to D as:

where the weights* 𝛼(q, ki ) can be thought of as “how similar the query q is to the key 
ki”.

■ This is called “attention” because the query is “paying particular attention” to the values 
whose keys are similar to it according to the function 𝛼. 

■ It is desirable that the weights are positive and sum to one, which can be accomplished 
via a softmax operation of the outputs of another similarity function 𝛼’(q, ki ):

* In particular, if 𝛼(q, ki ) = 1 only if q = ki, and 0 otherwise, we get our traditional/hard database query.



Dot Product Attention

■ If the query q and the key ki are row vectors in d dimensions, an option for their similarity 
could be their dot product* qki

T, or its scaled version**:

■ The above operation, called Scaled Dot Product Attention, does what we expect: 
●  It is largest if q = ki and lowest when they have opposite directions, 
●  It moves smoothly between those extremes for the other values of q and ki.

■ Say we have a matrix K ∈ ℝn×d of the n keys, and a matrix V ∈ ℝn×l of the 
corresponding n values, each in l dimensions. Then the attention on a query q ∈ ℝd is 
given by:

which is a vector in in l dimensions.
* Because they are row vectors, the transpose shows up on the second term in a dot product.
** The scaling is there to keep the order of magnitude of exp(𝛼’(q, ki )) and 𝛼(q, ki ) under control. 



■ Besides the attention as above there is the concept of Masked 
Attention where we force the queries to only attend to certain values, 
making the others “unreacheable”. 

■ This is done by adding a mask M ∈ ℝm×n  to the attention formula:

where M effectively encodes which queries can attend to which 
values (as shown on the right example).

■ Finally, say that we have m different queries, and place all of them as columns of a matrix 
Q ∈ ℝm×d . Then, we can compute a matrix in ℝm×l the attention on all queries via:

Attention and Masked Attention
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An example of Attention

■ Let’s see review it all via an example. Say we have these keys and values, and one query: 

■  Our first step is to compute the inner products between the query and the keys:

■ Since d = 2 and noting that 1/√2 ≅ 0.7, we compute the attention weights as:
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 𝛼’(q1, k1) ≅ 0.7 × q1k1
T = 2.1  𝛼’(q1, k2) ≅ 0.7 × q1k2

T = 4.9  𝛼’(q1, k3) ≅ 0.7 × q1k3
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 𝛼(q1, k1) = softmax(𝛼’(q1, k1))
 = 0.06

 𝛼(q1, k2) = softmax(𝛼’(q1, k2))
 = 0.93

 𝛼(q1, k3) = softmax(𝛼’(q1, k3))
 = 0.01

* A reminder about the softmax function: softmax(𝛼’(q1, ki)) = exp(𝛼’(q1, ki))/[exp(𝛼’(q1, k1)) + exp(𝛼’(q1, k2)) + exp(𝛼’(q1, k3))].



An example of Attention

■ The attention on q1 is computed via Attention(q1) = 𝛼(q1, k1) × v1 + 𝛼(q1, k2) × v2+ 𝛼(q1, k3) × v3 , 
which means:

■ This whole process can be written using the matrices of keys K (a stacking of k1, k2 and 
k3) and values V (a stacking of v1, v2 and v3) and usual matrix multiplication:

Attention(q1) 0.06 × 5 2 1 4 + 0.93 × 0 1 0 1 + 0.01 × 8 4 2 1
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■ Say we now have 5 queries instead of just one:

■ If one creates the matrix Q by stacking the queries, one can easily use the attention 
formula to compute all the query attentions using matrix multiplications: 

An example of Attention
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An example of Masked Attention

■ Now, say we’d like to apply the mask on the right.
■ This mask says that q1 is only allowed to attend to v1; q2 can 

attend to either v1 or v2; q3 can attend to all values; and so on.
■ From that we create a matrix M, where the “not allowed” 

locations are said to be -∞, while the allowed ones are zero.
■ Here is how the Masked attention computation looks like using 

the mask M now:
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An example of Masked Attention
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Mask Matrix M■ Now, say we’d like to apply the mask on the right.
■ This mask says that q1 is only allowed to attend to v1; q2 can 

attend to either v1 or v2; q3 can attend to all values; and so on.
■ From that we create a matrix M, where the “not allowed” 

locations are said to be -∞, while the allowed ones are zero.
■ Here is how the Masked attention computation looks like using 

the mask M now:
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-∞ -∞

-∞
-∞
0
0
0



An example of Masked Attention
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Mask Matrix M■ Now, say we’d like to apply the mask on the right.
■ This mask says that q1 is only allowed to attend to v1; q2 can 

attend to either v1 or v2; q3 can attend to all values; and so on.
■ From that we create a matrix M, where the “not allowed” 

locations are said to be -∞, while the allowed ones are zero.
■ Here is how the Masked attention computation looks like using 

the mask M now:
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An example of Masked Attention
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Mask Matrix M■ Now, say we’d like to apply the mask on the right.
■ This mask says that q1 is only allowed to attend to v1; q2 can 

attend to either v1 or v2; q3 can attend to all values; and so on.
■ From that we create a matrix M, where the “not allowed” 

locations are said to be -∞, while the allowed ones are zero.
■ Here is how the Masked attention computation looks like using 

the mask M now:
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An example of Masked Attention
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■ Now, say we’d like to apply the mask on the right.
■ This mask says that q1 is only allowed to attend to v1; q2 can 

attend to either v1 or v2; q3 can attend to all values; and so on.
■ From that we create a matrix M, where the “not allowed” 

locations are said to be -∞, while the allowed ones are zero.
■ Here is how the Masked attention computation looks like using 

the mask M now:

Note that, since 
q1 and q5 can 
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and v3, resp., 

their attention is 
exactly them.
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Q K V

Multi-head Attention

■ Finally, we can compute what is called Multi-head Attention.
■ Say we have h triples of matrices Wi

q ,  Wi
k, Wi

v (like linear 
layers in an MLP) one for each one of the query, key and value 
matrices; and compute an attention head as:

Then, we concatenate the heads and multiply the result by 
another matrix/linear layer W0 to get: 

■ As we’ll see later, the goal of the multihead attention is to 
learn different ways the keys can attend to the input queries, 
similarly to how different filters in a ConvLayer can learn 
different image features.

Multihead Attention Module



Exercise (in pairs)

■ Try it yourself! Say your database has the following keys and values:

and you have the following queries: 

what is the attention of these queries? You can use 1/√2 ≅ 0.7 for simplicity and use this 
website to compute softmax.

■ Say K ∈ ℝn×d, V ∈ ℝn×l and Q ∈ ℝm×d, what is the worst case memory complexity of 
computing Attention(Q, K, V)?

1 1 1 1

1 2k1 =

v1 = 1 0 0 1

-1 1k2 =

v2 = 0 0 1 1

0 1k3 =

v3 =

1 1q2 =0 1q1 =

https://www.redcrab-software.com/en/Calculator/Softmax


Machine Translation

Input 
sentence

Transformer 
Network

Translation

■ We saw that, if we have queries, keys and values, we can find the (Multi-head) attention 
of each query. Now, let’s make it practical and see how it can be used in NLP! 

■ We’ll use the task of Machine Translation to exemplify its usage:

Machine translation (MT) is the task of automatically translating a sentence in a source 
language to a different target language. 

■ It was to solve MT that the first Transformer was developed! Here’s how it broadly works:

The trained transformer takes in an input sentence and outputs its translation.



■ We saw that, if we have queries, keys and values, we can find the (Multi-head) attention 
of each query. Now, let’s make it practical and see how it can be used in NLP! 

■ We’ll use the task of Machine Translation to exemplify its usage:

Machine translation (MT) is the task of automatically translating a sentence in a source 
language to a different target language. 

■ It was to solve MT that the first Transformer was developed! Here’s how it broadly works:

Machine Translation

Input 
sentence

Transformer 
Network

TranslationPre-processing

Before the input goes into the transformer, it has to go through some preprocessing.



Machine Translation

Input 
sentence Encoder

Translation

Pre-processing

Decoder

■ We saw that, if we have queries, keys and values, we can find the (Multi-head) attention 
of each query. Now, let’s make it practical and see how it can be used in NLP! 

■ We’ll use the task of Machine Translation to exemplify its usage:

Machine translation (MT) is the task of automatically translating a sentence in a source 
language to a different target language. 

■ It was to solve MT that the first Transformer was developed! Here’s how it broadly works:

The transformer for MT is an encoder/decoder network, so the input first goes 
to an encoder then to a decoder.



First T-1 words in 
the translation

Machine Translation

Input 
sentence Encoder

 T-th word in 
the translation

Pre-processing

DecoderPre-processing

■ We saw that, if we have queries, keys and values, we can find the (Multi-head) attention 
of each query. Now, let’s make it practical and see how it can be used in NLP! 

■ We’ll use the task of Machine Translation to exemplify its usage:

Machine translation (MT) is the task of automatically translating a sentence in a source 
language to a different target language. 

■ It was to solve MT that the first Transformer was developed! Here’s how it broadly works:

One pass through the transformer only generates one (translated) word at a time, so we also 
input the previously translated words to the decoder after processing them.



Machine Translation

Je suis étudiant EncoderPre-processing

DecoderPre-processing

Decoding step T = 0

■ We saw that, if we have queries, keys and values, we can find the (Multi-head) attention 
of each query. Now, let’s make it practical and see how it can be used in NLP! 

■ We’ll use the task of Machine Translation to exemplify its usage:

Machine translation (MT) is the task of automatically translating a sentence in a source 
language to a different target language. 

■ It was to solve MT that the first Transformer was developed! Here’s how it broadly works:

An example: say we want to translate a sentence in French (“Je suis étudiant”) to English (“I am 
a student”). A trained transformer will behave as follows.



Machine Translation

Je suis étudiant EncoderPre-processing

DecoderPre-processing

Decoding step T = 1

■ We saw that, if we have queries, keys and values, we can find the (Multi-head) attention 
of each query. Now, let’s make it practical and see how it can be used in NLP! 

■ We’ll use the task of Machine Translation to exemplify its usage:

Machine translation (MT) is the task of automatically translating a sentence in a source 
language to a different target language. 

■ It was to solve MT that the first Transformer was developed! Here’s how it broadly works:

The first pass will generate the most likely word for the whole 
translation (“I” in this case)

I



Machine Translation

Je suis étudiant EncoderPre-processing

DecoderPre-processing

Decoding step T = 2

I

■ We saw that, if we have queries, keys and values, we can find the (Multi-head) attention 
of each query. Now, let’s make it practical and see how it can be used in NLP! 

■ We’ll use the task of Machine Translation to exemplify its usage:

Machine translation (MT) is the task of automatically translating a sentence in a source 
language to a different target language. 

■ It was to solve MT that the first Transformer was developed! Here’s how it broadly works:

After that, “I” becomes an input the decoder and now the transformer has to guess the most 
likely word for the translation of “Je suis étudiant” after “I” (which is “am” in this case)

am



Machine Translation

Je suis étudiant EncoderPre-processing

DecoderPre-processing

Decoding step T = 3

I am

■ We saw that, if we have queries, keys and values, we can find the (Multi-head) attention 
of each query. Now, let’s make it practical and see how it can be used in NLP! 

■ We’ll use the task of Machine Translation to exemplify its usage:

Machine translation (MT) is the task of automatically translating a sentence in a source 
language to a different target language. 

■ It was to solve MT that the first Transformer was developed! Here’s how it broadly works:

The process now repeats for the particle “I am”.

a



Machine Translation

Je suis étudiant EncoderPre-processing

DecoderPre-processing

Decoding step T = 4

I am a

■ We saw that, if we have queries, keys and values, we can find the (Multi-head) attention 
of each query. Now, let’s make it practical and see how it can be used in NLP! 

■ We’ll use the task of Machine Translation to exemplify its usage:

Machine translation (MT) is the task of automatically translating a sentence in a source 
language to a different target language. 

■ It was to solve MT that the first Transformer was developed! Here’s how it broadly works:

And for “I am a”.

student



Machine Translation

Je suis étudiant Encoder

<EOS>

Pre-processing

DecoderPre-processing

Decoding step T = 5
(Translation ended)

I am a student

■ We saw that, if we have queries, keys and values, we can find the (Multi-head) attention 
of each query. Now, let’s make it practical and see how it can be used in NLP! 

■ We’ll use the task of Machine Translation to exemplify its usage:

Machine translation (MT) is the task of automatically translating a sentence in a source 
language to a different target language. 

■ It was to solve MT that the first Transformer was developed! Here’s how it broadly works:

If the transformer thinks the translation is over, it will output a special word to define the End of 
Sentence (EOS) and finish the translation.



* We won’t cover any embedding algorithm in this course, but a common method is the Word2Vec algorithm. More info on it here.

Preprocessing the text: token embedding

■ Before we see the transformer in action, we need to see how it first preprocesses the 
data (text sentences).

■ As is the case in most NLP applications, we first transform each part (also referred to as 
“token”) of each sentence into numerical vectors using an embedding algorithm*. 

I

am

a

10 0Embedding

student

30 2Embedding

01 5Embedding

32 4Embedding

0

0

1

1

■ The embeddings are computed to 
capture the semantic meaning of 
each of the sentence’s tokens.

■ Tokens usually refer to individual 
words, but there special tokens 
for the end and beginning of 
sentences, punctuation signs, 
certain characters, etc.

<EOS> 10 3Embedding 4

http://jalammar.github.io/illustrated-word2vec/


Preprocessing the text: positional encoding

■ The embeddings, however, don’t carry any data on the tokens’ positions in the sentence.
■ For that reason, we sum each embedding vector to another vector that encodes its 

position (1st, 2nd, 3rd,…) in the sentence. This is called Positional Encoding.
■ These codes can be binary representations of the positions (0001, 0010, 0011, 0100…)*.
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* More usually, however, people use sine/cosine functions to encode positions. Read more here.

https://machinelearningmastery.com/a-gentle-introduction-to-positional-encoding-in-transformer-models-part-1/


The Encoder of a Transformer

■ In the Transformer architecture, our first objective is to learn a network that uses the 
attention mechanism to encode sentences (later we’ll see how to decode them).

■ To do so, we’d like to learn how the tokens in a given sentence attend to each other, 
using a process call self-attention:
● We’ll create a network that sends the position encoded word embeddings through three 

learnable layers that output query, key and value matrices.
● These matrices will then be input to a Multihead Attention module, from which we get an 

encoding of the input sentence. 
● For example, if we have 512 input embeddings, there will be 512 encoded output vectors.

Embedding + Position Input 
sentence

FC Layer

FC Layer

FC Layer

K

V

Q

Output 
Encoding

Multihead 
Attention



The Encoder of a Transformer

Embedding
+Position

Input 
sentence

Feed 
Forward

Multihead 
Attention + Output 

Encoding+

■ The creators of the Transformer used the previous encoding network to design a more 
complex encoder as follows:
● They added residual connections around the initial FC layers and the MHA module.
● They introduced a feed forward network (an MLP) after the attention module and surrounded it 

with a residual connection. 
● They applied N instances of this module sequentially. In this way, if the input of each instance 

is 512 vectors, the encoded output it’s again 512 vectors to be fed to the next instance.

■ After each residual residual connection, they also added a layer normalization step, 
which works similarly to batch normalization.

× N



The Decoder of a Transformer

Input 
sentence

Prep.Previous 
Words

Feed 
Forw’d

Masked 
MHA + Next 

Word++Multihead 
Attention

Prep. Encoder

× N
Linear + 
Softmax

K and V

■ The decoder part works similarly to the encoder with some major differences:
● It first goes by a Masked Multihead Attention, in order to prevent the network from learning 

attention scores for future words in the sentence (we only use past words to predict the one).
● After that, we have the usual Multihead Attention Module, where the key and value matrices 

are the same as the encoded input, while the queries are provided by the Masked MHA.
● At the end, result goes through a linear + softmax stage (like an MLP) to produce a one-hot 

predictor vector over all possible words in the target vocabulary.



Training a Transformer and Visualizing Attention

Self-attention visualization in two different heads■ Training a transformer for MT is simple*:
● Input a sentence in the original language to 

the encoder.
● Predict the translation of that sentence word 

by word and check if it matches the GT data.

■ The original transformer was trained in a 
English-French dataset consisting of 36 
million sentences with vocabulary of around 
32000 tokens using 8 GPUs for 3.5 days. 

■ With the trained transformer, we can visualize 
the attention weights and see how different 
heads learn different word relationships!

* Here is a very good video that explains this step-by-step of Transformers 
in more detail with nicer animations!

https://www.youtube.com/watch?v=4Bdc55j80l8


Visualizing Cross-Attention

Input sentences in French
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Applications of Transformers

■ The architecture we just saw shook the world of Deep 
Learning when it came out, outperforming many other CNN 
based methods in many AI tasks, not just MT.

■ The success of Attention based networks was so big that led  
to one of the creators of Deep Learning to make this claim:

■ A lot of the subsequent research in the area saw the 
transformer architecture drop either the encoder or decoder 
so it could be useful in other tasks.

■ Here, we’ll see what you can do when you keep one of them.

Original Transformer Diagram

https://venturebeat.com/ai/yoshua-bengio-attention-is-a-core-ingredient-of-consciousness-ai/


Keeping the Encoder: Text Classification

■ One popular way researchers use the transformer architecture is in text classification.
■ To do that, one typical way is to turn input sentences into feature vectors to be used in a 

MLP classifier. 
■ Starting with BERT (Bidirectional Encoder Representations from Transformer), proposed 

in 2018, researchers started adding a special token, called <CLS>, to each sentence and 
used its transformer encoding as a feature vector corresponding to the whole sentence.

Encoder⋮ ⋮

Original Transformer Encoder

Input tokens 
from a 

sentence.

Encoder⋮ ⋮

Transformer Encoder with <CLS> token

Input tokens + 
[CLS] token

Encoded 
tokens / 

embedding
Feature vector to be used in 

an MLP classifier network

https://arxiv.org/pdf/1810.04805.pdf


Keeping the Encoder: Vision Transformers

■ The same idea used for text classification, has 
been applied to image classification as well.

■ Published in 2020, the Vision Transformer 
(ViT) architecture was introduced.

■ The training of a ViT has the following steps:
● It first extracts square patches from the input 

image and uses them as tokens.
● These image patches are flattened, go through 

a Linear Layer and then get the positional code. 
● ViT then adds a <CLS> token to the 

preprocessed tokens.
● The tokens go through a transformer encoder.
● Only the encoded <CLS> goes through an MLP 

that classifies the whole image.

Vision Transformer (ViT) + Model Details

https://arxiv.org/pdf/2010.11929v2.pdf


Keeping the Encoder: Vision Transformers

■ When trained, we can understand what ViT learned using the 
attention weights it found, making it less “black-boxy” than CNNs.

■ In practice, ViTs also out performed many CNNs in classification. 
In the ImageNet challenge, it reaches over 90% on Top-1 acc.

■ The success of ViT lead to its application in other vision tasks 
such as object detection, image segmentation and many more!

What the <cls> token 
attends to in an image

Transformers for Obj. Detection (DETR) Transformers for Segmentation (SegFormer)

https://paperswithcode.com/sota/image-classification-on-imagenet
https://arxiv.org/pdf/2005.12872.pdf
https://arxiv.org/pdf/2105.15203.pdf
http://www.youtube.com/watch?v=nBjXyoltCHU
http://www.youtube.com/watch?v=Ln107mExSQ8


Keeping the Decoder: Text Generation

■ The most important task in NLP is text generation.
■ Much like with images, the goal here is to 

artificially create realistic sounding text, as if it 
had been a person who wrote it.

■ Despite years of attempts by many algorithms, it 
was with a transformer algorithm, called 
Generative Pre-trained Transformer (GPT), whose 
first version was launched in Jun. 2018 by OpenAI, 
that this task started to get realistically solved.

■ In particular, a conversational version of GPT 3.5, 
called ChatGPT, launched in Nov. 2022, took the 
world by storm and set a milestone in achieving 
high quality text generation and AI conversation. ChatGPT logo (with OpenAI long inside)

https://openai.com/research/language-unsupervised
https://www.theguardian.com/technology/2022/dec/05/what-is-ai-chatbot-phenomenon-chatgpt-and-could-it-replace-humans


Keeping the Decoder: Text Generation

■ As opposed to BERT, the GPT approach keeps the decoder of the original transformer.
■ Since there is no encoder, GPT only relies on repeating the masked attention + feed 

forward architecture (N = 12 modules for GPT 1) from the transformer decoder:

■ Training GPT is simple: given a dataset of sentences/texts, GPT goes through each 
sentence and tries to predict the next word in them given the previous words as inputs.

■ This process is called unsupervised pre-training (hence the “P” in GPT).
■ What is impressive about GPT is the amount parameters in it and of data used in training:

● Dataset (BookCorpus): 4.5 GB of text, from 7000 unpublished books of various genres.
● Training (117 million parameters): 30 days on 8 then high end GPUs.
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+ Position
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Feed 
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Masked 
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Keeping the Decoder: Text Generation

■ The first GPT’s size, however, pales compared its follow-up versions:
● GPT 2 (Released in Feb. 2019): 48 decoder modules / 1.5 billion parameters. Trained on 

WebText dataset (40 GB of text from 45 million Reddit webpages).
● GPT 3 (Released in May 2020): 96 decoder modules / 175 billion parameters. Trained on 

CommonCrawl dataset (570 GB of web content) + WebText  + English Wikipedia + two books 
corpora (Books1 and Books2).

● GPT 3.5 (Released in Mar. 2022): Undisclosed architecture (estimated to also have 175 billion 
parameters) and training data. 

● GPT 4 (Released in Mar. 2023): Undisclosed architecture (estimated to have 1 trillion learnable 
parameters) and training data.

https://the-decoder.com/gpt-4-has-a-trillion-parameters/


■ ChatGPT uses GPT to create a conversational engine, where a user can “provide” parts 
of the text generation and the neural network provides the next sentences.

■ To do so, ChatGPT has a special End of Question token (<EOQ>) that signs that this is 
from where the GPT engine should generate text by itself.

■ To make ChatGPT’s (and GPT 3’s) predictions more precise and realistic, OpenAI made 
use of Reinforcement Learning from Human Feedback (RLHF) along with pre-training:

a. Human annotators are tasked at ranking various ChatGPT answers for certain questions.
b. The ranks are fed into a reinforcement learning algorithm that learns the agent's policy.
c. The agent collects more data, and the feedback from human experts is used to refine the 

agent's policy

Keeping the Decoder: Text Generation

ChatGPTWhat is GPT ? <EOQ>

Question from the user.
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■ ChatGPT uses GPT to create a conversational engine, where a user can “provide” parts 
of the text generation and the neural network provides the next sentences.
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Amazing Achievements of ChatGPT

■ ChatGPT (and GPT4) achieved some impressive 
achievements (which you probably already know about):
● ChatGPT can create resumes, cover letters, and LinkedIn 

profiles,
● It can write annual HR self-reflections and accomplishments,
● ChatGPT can generate essays, literary parodies, and 

programming answers,
● It can blend actual facts with made-up ones in a biography 

of a public figure or cite plausible scientific references for 
papers that were never written,

● ChatGPT can hold engaging discussions, respond to 
inquiries, and create original writings like stories, poems, 
and essays,

● Write the text you are seeing in this slide!

GPT4 As introduced by OpenAI

http://www.youtube.com/watch?v=--khbXchTeE
http://www.youtube.com/watch?v=oc6RV5c1yd0


How popular is ChatGPT?

■ Some interesting stats about ChatGPT (as of Oct. 2023, source and more stats: here):
a. ChatGPT was launched on November 30, 2022 and crossed 1 million users in just 5 days of 

launch (Instagram took 75 days) and had 100 million active users by January 2023.
b. It has 180.5 million users, generates $80 million/month revenue, and crossed over 10 billion 

all-time visits in 2023. In September 2024 alone, ChatGPT got 3.1 billion website visits
c. OpenAI spends $700k every day to run ChatGPT as of August 2023.
d. As per Reuters, OpenAI generated an estimated $3.7 billion in revenue from ChatGPT in 2024, 

with projections reaching $11.7 billion by 2025.
e. 43% of college students and 80% of the Fortune 500 companies are using ChatGPT in 2024.
f. OpenAI was founded by Sam Altman and Elon Musk. Microsoft invested $10 billion in 2023. It is 

valued at $29 billion and is seeking a new valuation up to $90 billion due to higher revenues.
g. A 2023 survey revealed that 25% of US companies saved $50K-$70K using ChatGPT, while 

11% saved over $100K.

■ Finally, here is nice video for more illustrative details on ChatGPT from OpenAI’s CTO.

https://nerdynav.com/chatgpt-statistics/#:~:text=Top%20ChatGPT%20Statistics,visits%20in%20August%202023%20itself).
https://www.youtube.com/watch?v=C_78DM8fG6E&ab_channel=TED


■ Hugging Face has a great library (and API) of pretrained 
transformer models with a great tutorials (check it out here).

■ Best part: all free! You just install it:

■ There you find transformers trained for all kinds of AI tasks:
● Natural Language Processing: text classification, question 

answering, summarization, translation, and text generation, etc.
● Computer Vision: classification, detection, and segmentation.
● Audio: automatic speech recognition and audio classification.
● Multimodal: table question answering, optical character 

recognition, information extraction from scanned documents, 
video classification, and visual question answering.

■ You can also use BERT, GPT 1 and GPT 2 there for free.

Transformers in Pytorch

pip install transformers

https://huggingface.co/docs/transformers/index


Video: ChatGPT, AI , Energy and more

http://www.youtube.com/watch?v=a2DgdsE86ts
http://www.youtube.com/watch?v=MWHN6ojlVXI
http://www.youtube.com/watch?v=YGfJeH5HRDQ
http://www.youtube.com/watch?v=MJQIQJYxey4

