
CS3485
Deep Learning for Computer Vision

Lec 20/21: Attention, Transformers and ChatGPT

Announcements

■ Interesting application of stylegan: https://facemorph.me/

https://facemorph.me/

Announcements

■ Mega quiz next Monday:
● More questions: 40 to 50,
● More time: 1hr,
● More content: all of our course!
● More weight: worth 4 regular quizzes!

■ Reminder: lowest grade on regular quizzes will be dropped.
■ Finally, let’s finish the previous lecture!

(Tentative) Lecture Roadmap

Basics of Deep Learning

Deep Learning and Computer Vision in Practice

Intro to Object
Detection

Fast Object
Detection

Intro to Image
Segmentation

Autoencoders Advanced GANs

Applications of Detection
and Segmentation

Image Generation
with GANs

The Attention
Mechanism

Transformers
and ChatGPT

Intro to
Computer Vision

Linear Classifiers and
Perceptron

Multilayer Perceptron Pytorch I – MLPs Convolutional Neural
Networks

Optimization
in Deep Learning

Pytorch II – Images and
Regularization

Data Augmentation
and Deep CNNs

Inception Net and
what CNNs learn

Transfer Learning and
Residual Nets

Adversarial Examples
and Self-supervision

Intro to
MLOps

Image Generation
by Prompt

Misc.
Topics

Deep Learning for Language Modeling

■ Besides Computer Vision, Deep Learning has had an
(arguably larger) impact on Natural Language Processing:

Natural Language Processing (NLP) is the study of how
computers can gain high-level understanding from

language data, such as text and speech.

■ This impact is now mostly driven by the Transformer
Architecture, proposed in a ground-breaking 2017 paper
called Attention is All You Need.

■ The transformer architecture is the basis for one of the
most impactful deep learning solutions in the industry,
ChatGPT, which we’ll also cover here.

■ To understand transformers, we start with Attention.

https://arxiv.org/pdf/1706.03762.pdf

Retrieval in Databases

■ The Attention Mechanism is the core operation in Transformers (analogously to how
Convolution is core to CNNs), and emerged from the study of Databases.

■ In their simplest form, databases are collections of keys (k) and values (v).
■ For example, a database D might consist of a list of pairs names like

 {(“Barclay”, “Andrew”), (“Chen”, “Li”), (“Barros”, “Luis”), (“Dubois”, “Nicole”)},

with the last name being the key and the first name being the value.
■ When retrieving info from D, the query (q) for “Barros” returns the value “Luis”, for

example. We can call this hard (or exact) retrieval.
■ If the entry (“Barros”, “Luis”) were not in D, we could do a couple of things:

● Return “null” or “entry not found”.
● Return an approximate match, like “Andrew”, since “Barros” is somewhat similar to “Barclay”.
● Return a combination of values summed according to a weight function (the most values for the

most similar keys will weight more). We shall call this strategy soft-retrieval.

Add example with numbers/vectors

Attention

■ Say D = {(k1 , v1), (k2 , v2),..., (kn , vn)} of keys ki and values vi. We can then define our
softly retrieved value (or “Query Attention”) of a query q according to D as:

where the weights* 𝛼(q, ki) can be thought of as “how similar the query q is to the key
ki”.

■ This is called “attention” because the query is “paying particular attention” to the values
whose keys are similar to it according to the function 𝛼.

■ It is desirable that the weights are positive and sum to one, which can be accomplished
via a softmax operation of the outputs of another similarity function 𝛼’(q, ki):

* In particular, if 𝛼(q, ki) = 1 only if q = ki, and 0 otherwise, we get our traditional/hard database query.

Dot Product Attention

■ If the query q and the key ki are row vectors in d dimensions, an option for their similarity
could be their dot product* qki

T, or its scaled version**:

■ The above operation, called Scaled Dot Product Attention, does what we expect:
● It is largest if q = ki and lowest when they have opposite directions,
● It moves smoothly between those extremes for the other values of q and ki.

■ Say we have a matrix K ∈ ℝn×d of the n keys, and a matrix V ∈ ℝn×l of the
corresponding n values, each in l dimensions. Then the attention on a query q ∈ ℝd is
given by:

which is a vector in in l dimensions.
* Because they are row vectors, the transpose shows up on the second term in a dot product.
** The scaling is there to keep the order of magnitude of exp(𝛼’(q, ki)) and 𝛼(q, ki) under control.

■ Besides the attention as above there is the concept of Masked
Attention where we force the queries to only attend to certain values,
making the others “unreacheable”.

■ This is done by adding a mask M ∈ ℝm×n to the attention formula:

where M effectively encodes which queries can attend to which
values (as shown on the right example).

■ Finally, say that we have m different queries, and place all of them as columns of a matrix
Q ∈ ℝm×d . Then, we can compute a matrix in ℝm×l the attention on all queries via:

Attention and Masked Attention

Mask

Q
ue

ry
 in

de
x

Value index

Each of the 4 queries can
attend only the value

indices that are green.

An example of Attention

■ Let’s see review it all via an example. Say we have these keys and values, and one query:

■ Our first step is to compute the inner products between the query and the keys:

■ Since d = 2 and noting that 1/√2 ≅ 0.7, we compute the attention weights as:

5 2 1 4

1 2k1 =

v1 = 0 1 0 1

2 5k2 =

v2 = 8 4 2 1

0 1k3 =

v3 =

1 1q1 =

1

2

1 1 ᐧ q1k1
T = = 3 2

5

1 1 ᐧ q1k2
T = = 7 0

1

1 1 ᐧ q1k3
T = = 1

 𝛼’(q1, k1) ≅ 0.7 × q1k1
T = 2.1 𝛼’(q1, k2) ≅ 0.7 × q1k2

T = 4.9 𝛼’(q1, k3) ≅ 0.7 × q1k3
T = 0.7

 𝛼(q1, k1) = softmax(𝛼’(q1, k1))
 = 0.06

 𝛼(q1, k2) = softmax(𝛼’(q1, k2))
 = 0.93

 𝛼(q1, k3) = softmax(𝛼’(q1, k3))
 = 0.01

* A reminder about the softmax function: softmax(𝛼’(q1, ki)) = exp(𝛼’(q1, ki))/[exp(𝛼’(q1, k1)) + exp(𝛼’(q1, k2)) + exp(𝛼’(q1, k3))].

An example of Attention

■ The attention on q1 is computed via Attention(q1) = 𝛼(q1, k1) × v1 + 𝛼(q1, k2) × v2+ 𝛼(q1, k3) × v3 ,
which means:

■ This whole process can be written using the matrices of keys K (a stacking of k1, k2 and
k3) and values V (a stacking of v1, v2 and v3) and usual matrix multiplication:

Attention(q1) 0.06 × 5 2 1 4 + 0.93 × 0 1 0 1 + 0.01 × 8 4 2 1

= 0.38 1.09 1.01 1.18

=

1

2

1 1 ᐧ 2

5

0

1

0.7 × 5 2 1 4

0 1 0 1

8 4 2 1

ᐧsoftmax

q1 KT V

Attention(q1) = = 0.38 1.09 1.01 1.18

■ Say we now have 5 queries instead of just one:

■ If one creates the matrix Q by stacking the queries, one can easily use the attention
formula to compute all the query attentions using matrix multiplications:

An example of Attention

1

2

1 1 ᐧ 2

5

0

1

0.7 × 5 2 1 4

0 1 0 1

8 4 2 1

ᐧsoftmaxAttention(Q, K, V) = = 0.38 1.09 1.01 1.18

0 1

1 0

2 2

1 2

0.93 1.26 0.20 1.31

2.55 1.70 0.56 1.85

0.02 1.00 0.00 1.01

0.04 1.01 0.00 1.02

Q KT V

0 1q2 =1 1q1 = 2 2q4 =1 0q3 = 1 2q5 =

Note that the resulting
attention is kind of “encoding”

each one of the queries.

An example of Masked Attention

■ Now, say we’d like to apply the mask on the right.
■ This mask says that q1 is only allowed to attend to v1; q2 can

attend to either v1 or v2; q3 can attend to all values; and so on.
■ From that we create a matrix M, where the “not allowed”

locations are said to be -∞, while the allowed ones are zero.
■ Here is how the Masked attention computation looks like using

the mask M now:

1

2

1 1 ᐧ 2

5

0

1

0.7 × 5 2 1 4

0 1 0 1

8 4 2 1

ᐧsoftmaxAttention(Q, K, V) =

0 1

1 0

2 2

1 2

+ 0 -∞
0 0

0 0

-∞ 0

-∞ -∞

-∞
-∞
0

0

0

0.7 ×

0 -∞
0 0
0 0
-∞ 0
-∞ -∞

-∞
-∞
0
0
0

Mask Matrix M

An example of Masked Attention

0.7 × 5 2 1 4

0 1 0 1

8 4 2 1

ᐧsoftmaxAttention(Q, K, V) = + 0 -∞
0 0

0 0

-∞ 0

-∞ -∞

-∞
-∞
0

0

0

0.7 ×3 7

2 5

1 2

6 14

5 12

1

1

0

2

2

Mask Matrix M■ Now, say we’d like to apply the mask on the right.
■ This mask says that q1 is only allowed to attend to v1; q2 can

attend to either v1 or v2; q3 can attend to all values; and so on.
■ From that we create a matrix M, where the “not allowed”

locations are said to be -∞, while the allowed ones are zero.
■ Here is how the Masked attention computation looks like using

the mask M now:

0 -∞
0 0
0 0
-∞ 0
-∞ -∞

-∞
-∞
0
0
0

An example of Masked Attention

0.7 × 5 2 1 4

0 1 0 1

8 4 2 1

ᐧsoftmaxAttention(Q, K, V) = 3 -∞
2 5

1 2

-∞ 14

-∞ -∞

-∞
-∞
0

2

2

Mask Matrix M■ Now, say we’d like to apply the mask on the right.
■ This mask says that q1 is only allowed to attend to v1; q2 can

attend to either v1 or v2; q3 can attend to all values; and so on.
■ From that we create a matrix M, where the “not allowed”

locations are said to be -∞, while the allowed ones are zero.
■ Here is how the Masked attention computation looks like using

the mask M now:

0 -∞
0 0
0 0
-∞ 0
-∞ -∞

-∞
-∞
0
0
0

An example of Masked Attention

5 2 1 4

0 1 0 1

8 4 2 1

ᐧAttention(Q, K, V) = 1 0

0.11 0.89

0.29 0.57

0 0.99

0 0

0

0

0.14

0.01

1

Mask Matrix M■ Now, say we’d like to apply the mask on the right.
■ This mask says that q1 is only allowed to attend to v1; q2 can

attend to either v1 or v2; q3 can attend to all values; and so on.
■ From that we create a matrix M, where the “not allowed”

locations are said to be -∞, while the allowed ones are zero.
■ Here is how the Masked attention computation looks like using

the mask M now:

0 -∞
0 0
0 0
-∞ 0
-∞ -∞

-∞
-∞
0
0
0

An example of Masked Attention

5 2 1 4

0 1 0 1

8 4 2 1

ᐧAttention(Q, K, V) = 1 0

0.11 0.89

0.29 0.57

0 0.99

0 0

0

0

0.14

0.01

1

Mask Matrix M

= 5 2 1 4

0.54 1.11 1.11 1.31

2.55 1.70 0.56 1.85

0.08 1.03 0.02 1.00

8 4 2 1

■ Now, say we’d like to apply the mask on the right.
■ This mask says that q1 is only allowed to attend to v1; q2 can

attend to either v1 or v2; q3 can attend to all values; and so on.
■ From that we create a matrix M, where the “not allowed”

locations are said to be -∞, while the allowed ones are zero.
■ Here is how the Masked attention computation looks like using

the mask M now:

Note that, since
q1 and q5 can

only attend to v1
and v3, resp.,

their attention is
exactly them.

0 -∞
0 0
0 0
-∞ 0
-∞ -∞

-∞
-∞
0
0
0

Q K V

Multi-head Attention

■ Finally, we can compute what is called Multi-head Attention.
■ Say we have h triples of matrices Wi

q , Wi
k, Wi

v (like linear
layers in an MLP) one for each one of the query, key and value
matrices; and compute an attention head as:

Then, we concatenate the heads and multiply the result by
another matrix/linear layer W0 to get:

■ As we’ll see later, the goal of the multihead attention is to
learn different ways the keys can attend to the input queries,
similarly to how different filters in a ConvLayer can learn
different image features.

Multihead Attention Module

Exercise (in pairs)

■ Try it yourself! Say your database has the following keys and values:

and you have the following queries:

what is the attention of these queries? You can use 1/√2 ≅ 0.7 for simplicity and use this
website to compute softmax.

■ Say K ∈ ℝn×d, V ∈ ℝn×l and Q ∈ ℝm×d, what is the worst case memory complexity of
computing Attention(Q, K, V)?

1 1 1 1

1 2k1 =

v1 = 1 0 0 1

-1 1k2 =

v2 = 0 0 1 1

0 1k3 =

v3 =

1 1q2 =0 1q1 =

https://www.redcrab-software.com/en/Calculator/Softmax

Machine Translation

Input
sentence

Transformer
Network

Translation

■ We saw that, if we have queries, keys and values, we can find the (Multi-head) attention
of each query. Now, let’s make it practical and see how it can be used in NLP!

■ We’ll use the task of Machine Translation to exemplify its usage:

Machine translation (MT) is the task of automatically translating a sentence in a source
language to a different target language.

■ It was to solve MT that the first Transformer was developed! Here’s how it broadly works:

The trained transformer takes in an input sentence and outputs its translation.

■ We saw that, if we have queries, keys and values, we can find the (Multi-head) attention
of each query. Now, let’s make it practical and see how it can be used in NLP!

■ We’ll use the task of Machine Translation to exemplify its usage:

Machine translation (MT) is the task of automatically translating a sentence in a source
language to a different target language.

■ It was to solve MT that the first Transformer was developed! Here’s how it broadly works:

Machine Translation

Input
sentence

Transformer
Network

TranslationPre-processing

Before the input goes into the transformer, it has to go through some preprocessing.

Machine Translation

Input
sentence Encoder

Translation

Pre-processing

Decoder

■ We saw that, if we have queries, keys and values, we can find the (Multi-head) attention
of each query. Now, let’s make it practical and see how it can be used in NLP!

■ We’ll use the task of Machine Translation to exemplify its usage:

Machine translation (MT) is the task of automatically translating a sentence in a source
language to a different target language.

■ It was to solve MT that the first Transformer was developed! Here’s how it broadly works:

The transformer for MT is an encoder/decoder network, so the input first goes
to an encoder then to a decoder.

First T-1 words in
the translation

Machine Translation

Input
sentence Encoder

 T-th word in
the translation

Pre-processing

DecoderPre-processing

■ We saw that, if we have queries, keys and values, we can find the (Multi-head) attention
of each query. Now, let’s make it practical and see how it can be used in NLP!

■ We’ll use the task of Machine Translation to exemplify its usage:

Machine translation (MT) is the task of automatically translating a sentence in a source
language to a different target language.

■ It was to solve MT that the first Transformer was developed! Here’s how it broadly works:

One pass through the transformer only generates one (translated) word at a time, so we also
input the previously translated words to the decoder after processing them.

Machine Translation

Je suis étudiant EncoderPre-processing

DecoderPre-processing

Decoding step T = 0

■ We saw that, if we have queries, keys and values, we can find the (Multi-head) attention
of each query. Now, let’s make it practical and see how it can be used in NLP!

■ We’ll use the task of Machine Translation to exemplify its usage:

Machine translation (MT) is the task of automatically translating a sentence in a source
language to a different target language.

■ It was to solve MT that the first Transformer was developed! Here’s how it broadly works:

An example: say we want to translate a sentence in French (“Je suis étudiant”) to English (“I am
a student”). A trained transformer will behave as follows.

Machine Translation

Je suis étudiant EncoderPre-processing

DecoderPre-processing

Decoding step T = 1

■ We saw that, if we have queries, keys and values, we can find the (Multi-head) attention
of each query. Now, let’s make it practical and see how it can be used in NLP!

■ We’ll use the task of Machine Translation to exemplify its usage:

Machine translation (MT) is the task of automatically translating a sentence in a source
language to a different target language.

■ It was to solve MT that the first Transformer was developed! Here’s how it broadly works:

The first pass will generate the most likely word for the whole
translation (“I” in this case)

I

Machine Translation

Je suis étudiant EncoderPre-processing

DecoderPre-processing

Decoding step T = 2

I

■ We saw that, if we have queries, keys and values, we can find the (Multi-head) attention
of each query. Now, let’s make it practical and see how it can be used in NLP!

■ We’ll use the task of Machine Translation to exemplify its usage:

Machine translation (MT) is the task of automatically translating a sentence in a source
language to a different target language.

■ It was to solve MT that the first Transformer was developed! Here’s how it broadly works:

After that, “I” becomes an input the decoder and now the transformer has to guess the most
likely word for the translation of “Je suis étudiant” after “I” (which is “am” in this case)

am

Machine Translation

Je suis étudiant EncoderPre-processing

DecoderPre-processing

Decoding step T = 3

I am

■ We saw that, if we have queries, keys and values, we can find the (Multi-head) attention
of each query. Now, let’s make it practical and see how it can be used in NLP!

■ We’ll use the task of Machine Translation to exemplify its usage:

Machine translation (MT) is the task of automatically translating a sentence in a source
language to a different target language.

■ It was to solve MT that the first Transformer was developed! Here’s how it broadly works:

The process now repeats for the particle “I am”.

a

Machine Translation

Je suis étudiant EncoderPre-processing

DecoderPre-processing

Decoding step T = 4

I am a

■ We saw that, if we have queries, keys and values, we can find the (Multi-head) attention
of each query. Now, let’s make it practical and see how it can be used in NLP!

■ We’ll use the task of Machine Translation to exemplify its usage:

Machine translation (MT) is the task of automatically translating a sentence in a source
language to a different target language.

■ It was to solve MT that the first Transformer was developed! Here’s how it broadly works:

And for “I am a”.

student

Machine Translation

Je suis étudiant Encoder

<EOS>

Pre-processing

DecoderPre-processing

Decoding step T = 5
(Translation ended)

I am a student

■ We saw that, if we have queries, keys and values, we can find the (Multi-head) attention
of each query. Now, let’s make it practical and see how it can be used in NLP!

■ We’ll use the task of Machine Translation to exemplify its usage:

Machine translation (MT) is the task of automatically translating a sentence in a source
language to a different target language.

■ It was to solve MT that the first Transformer was developed! Here’s how it broadly works:

If the transformer thinks the translation is over, it will output a special word to define the End of
Sentence (EOS) and finish the translation.

* We won’t cover any embedding algorithm in this course, but a common method is the Word2Vec algorithm. More info on it here.

Preprocessing the text: token embedding

■ Before we see the transformer in action, we need to see how it first preprocesses the
data (text sentences).

■ As is the case in most NLP applications, we first transform each part (also referred to as
“token”) of each sentence into numerical vectors using an embedding algorithm*.

I

am

a

10 0Embedding

student

30 2Embedding

01 5Embedding

32 4Embedding

0

0

1

1

■ The embeddings are computed to
capture the semantic meaning of
each of the sentence’s tokens.

■ Tokens usually refer to individual
words, but there special tokens
for the end and beginning of
sentences, punctuation signs,
certain characters, etc.

<EOS> 10 3Embedding 4

http://jalammar.github.io/illustrated-word2vec/

Preprocessing the text: positional encoding

■ The embeddings, however, don’t carry any data on the tokens’ positions in the sentence.
■ For that reason, we sum each embedding vector to another vector that encodes its

position (1st, 2nd, 3rd,…) in the sentence. This is called Positional Encoding.
■ These codes can be binary representations of the positions (0001, 0010, 0011, 0100…)*.

I

am

a

10 0Embedding

student

30 2Embedding

01 5Embedding

32 4Embedding

0

0

1

1

<EOS> 10 3Embedding 4

+ Position code

+ Position code

+ Position code

+ Position code

+ Position code

10 0

30 3

01 1

62 4

1

0

2

1

20 3 5

* More usually, however, people use sine/cosine functions to encode positions. Read more here.

https://machinelearningmastery.com/a-gentle-introduction-to-positional-encoding-in-transformer-models-part-1/

The Encoder of a Transformer

■ In the Transformer architecture, our first objective is to learn a network that uses the
attention mechanism to encode sentences (later we’ll see how to decode them).

■ To do so, we’d like to learn how the tokens in a given sentence attend to each other,
using a process call self-attention:
● We’ll create a network that sends the position encoded word embeddings through three

learnable layers that output query, key and value matrices.
● These matrices will then be input to a Multihead Attention module, from which we get an

encoding of the input sentence.
● For example, if we have 512 input embeddings, there will be 512 encoded output vectors.

Embedding + Position Input
sentence

FC Layer

FC Layer

FC Layer

K

V

Q

Output
Encoding

Multihead
Attention

The Encoder of a Transformer

Embedding
+Position

Input
sentence

Feed
Forward

Multihead
Attention + Output

Encoding+

■ The creators of the Transformer used the previous encoding network to design a more
complex encoder as follows:
● They added residual connections around the initial FC layers and the MHA module.
● They introduced a feed forward network (an MLP) after the attention module and surrounded it

with a residual connection.
● They applied N instances of this module sequentially. In this way, if the input of each instance

is 512 vectors, the encoded output it’s again 512 vectors to be fed to the next instance.

■ After each residual residual connection, they also added a layer normalization step,
which works similarly to batch normalization.

× N

The Decoder of a Transformer

Input
sentence

Prep.Previous
Words

Feed
Forw’d

Masked
MHA + Next

Word++Multihead
Attention

Prep. Encoder

× N
Linear +
Softmax

K and V

■ The decoder part works similarly to the encoder with some major differences:
● It first goes by a Masked Multihead Attention, in order to prevent the network from learning

attention scores for future words in the sentence (we only use past words to predict the one).
● After that, we have the usual Multihead Attention Module, where the key and value matrices

are the same as the encoded input, while the queries are provided by the Masked MHA.
● At the end, result goes through a linear + softmax stage (like an MLP) to produce a one-hot

predictor vector over all possible words in the target vocabulary.

Training a Transformer and Visualizing Attention

Self-attention visualization in two different heads■ Training a transformer for MT is simple*:
● Input a sentence in the original language to

the encoder.
● Predict the translation of that sentence word

by word and check if it matches the GT data.

■ The original transformer was trained in a
English-French dataset consisting of 36
million sentences with vocabulary of around
32000 tokens using 8 GPUs for 3.5 days.

■ With the trained transformer, we can visualize
the attention weights and see how different
heads learn different word relationships!

* Here is a very good video that explains this step-by-step of Transformers
in more detail with nicer animations!

https://www.youtube.com/watch?v=4Bdc55j80l8

Visualizing Cross-Attention

Input sentences in French

O
ut

pu
t s

en
te

nc
es

 i
n

En
gl

is
h

Applications of Transformers

■ The architecture we just saw shook the world of Deep
Learning when it came out, outperforming many other CNN
based methods in many AI tasks, not just MT.

■ The success of Attention based networks was so big that led
to one of the creators of Deep Learning to make this claim:

■ A lot of the subsequent research in the area saw the
transformer architecture drop either the encoder or decoder
so it could be useful in other tasks.

■ Here, we’ll see what you can do when you keep one of them.

Original Transformer Diagram

https://venturebeat.com/ai/yoshua-bengio-attention-is-a-core-ingredient-of-consciousness-ai/

Keeping the Encoder: Text Classification

■ One popular way researchers use the transformer architecture is in text classification.
■ To do that, one typical way is to turn input sentences into feature vectors to be used in a

MLP classifier.
■ Starting with BERT (Bidirectional Encoder Representations from Transformer), proposed

in 2018, researchers started adding a special token, called <CLS>, to each sentence and
used its transformer encoding as a feature vector corresponding to the whole sentence.

Encoder⋮ ⋮

Original Transformer Encoder

Input tokens
from a

sentence.

Encoder⋮ ⋮

Transformer Encoder with <CLS> token

Input tokens +
[CLS] token

Encoded
tokens /

embedding
Feature vector to be used in

an MLP classifier network

https://arxiv.org/pdf/1810.04805.pdf

Keeping the Encoder: Vision Transformers

■ The same idea used for text classification, has
been applied to image classification as well.

■ Published in 2020, the Vision Transformer
(ViT) architecture was introduced.

■ The training of a ViT has the following steps:
● It first extracts square patches from the input

image and uses them as tokens.
● These image patches are flattened, go through

a Linear Layer and then get the positional code.
● ViT then adds a <CLS> token to the

preprocessed tokens.
● The tokens go through a transformer encoder.
● Only the encoded <CLS> goes through an MLP

that classifies the whole image.

Vision Transformer (ViT) + Model Details

https://arxiv.org/pdf/2010.11929v2.pdf

Keeping the Encoder: Vision Transformers

■ When trained, we can understand what ViT learned using the
attention weights it found, making it less “black-boxy” than CNNs.

■ In practice, ViTs also out performed many CNNs in classification.
In the ImageNet challenge, it reaches over 90% on Top-1 acc.

■ The success of ViT lead to its application in other vision tasks
such as object detection, image segmentation and many more!

What the <cls> token
attends to in an image

Transformers for Obj. Detection (DETR) Transformers for Segmentation (SegFormer)

https://paperswithcode.com/sota/image-classification-on-imagenet
https://arxiv.org/pdf/2005.12872.pdf
https://arxiv.org/pdf/2105.15203.pdf
http://www.youtube.com/watch?v=nBjXyoltCHU
http://www.youtube.com/watch?v=Ln107mExSQ8

Keeping the Decoder: Text Generation

■ The most important task in NLP is text generation.
■ Much like with images, the goal here is to

artificially create realistic sounding text, as if it
had been a person who wrote it.

■ Despite years of attempts by many algorithms, it
was with a transformer algorithm, called
Generative Pre-trained Transformer (GPT), whose
first version was launched in Jun. 2018 by OpenAI,
that this task started to get realistically solved.

■ In particular, a conversational version of GPT 3.5,
called ChatGPT, launched in Nov. 2022, took the
world by storm and set a milestone in achieving
high quality text generation and AI conversation. ChatGPT logo (with OpenAI long inside)

https://openai.com/research/language-unsupervised
https://www.theguardian.com/technology/2022/dec/05/what-is-ai-chatbot-phenomenon-chatgpt-and-could-it-replace-humans

Keeping the Decoder: Text Generation

■ As opposed to BERT, the GPT approach keeps the decoder of the original transformer.
■ Since there is no encoder, GPT only relies on repeating the masked attention + feed

forward architecture (N = 12 modules for GPT 1) from the transformer decoder:

■ Training GPT is simple: given a dataset of sentences/texts, GPT goes through each
sentence and tries to predict the next word in them given the previous words as inputs.

■ This process is called unsupervised pre-training (hence the “P” in GPT).
■ What is impressive about GPT is the amount parameters in it and of data used in training:

● Dataset (BookCorpus): 4.5 GB of text, from 7000 unpublished books of various genres.
● Training (117 million parameters): 30 days on 8 then high end GPUs.

Embedd.
+ Position

Previous
Words

Feed
Forward

Masked
MHA + Next

Word+
× N

Linear +
Softmax

Layer
Norm.

Keeping the Decoder: Text Generation

■ The first GPT’s size, however, pales compared its follow-up versions:
● GPT 2 (Released in Feb. 2019): 48 decoder modules / 1.5 billion parameters. Trained on

WebText dataset (40 GB of text from 45 million Reddit webpages).
● GPT 3 (Released in May 2020): 96 decoder modules / 175 billion parameters. Trained on

CommonCrawl dataset (570 GB of web content) + WebText + English Wikipedia + two books
corpora (Books1 and Books2).

● GPT 3.5 (Released in Mar. 2022): Undisclosed architecture (estimated to also have 175 billion
parameters) and training data.

● GPT 4 (Released in Mar. 2023): Undisclosed architecture (estimated to have 1 trillion learnable
parameters) and training data.

https://the-decoder.com/gpt-4-has-a-trillion-parameters/

■ ChatGPT uses GPT to create a conversational engine, where a user can “provide” parts
of the text generation and the neural network provides the next sentences.

■ To do so, ChatGPT has a special End of Question token (<EOQ>) that signs that this is
from where the GPT engine should generate text by itself.

■ To make ChatGPT’s (and GPT 3’s) predictions more precise and realistic, OpenAI made
use of Reinforcement Learning from Human Feedback (RLHF) along with pre-training:

a. Human annotators are tasked at ranking various ChatGPT answers for certain questions.
b. The ranks are fed into a reinforcement learning algorithm that learns the agent's policy.
c. The agent collects more data, and the feedback from human experts is used to refine the

agent's policy

Keeping the Decoder: Text Generation

ChatGPTWhat is GPT ? <EOQ>

Question from the user.

■ ChatGPT uses GPT to create a conversational engine, where a user can “provide” parts
of the text generation and the neural network provides the next sentences.

■ To do so, ChatGPT has a special End of Question token (<EOQ>) that signs that this is
from where the GPT engine should generate text by itself.

■ To make ChatGPT’s (and GPT 3’s) predictions more precise and realistic, OpenAI made
use of Reinforcement Learning from Human Feedback (RLHF) along with pre-training:

a. Human annotators are tasked at ranking various ChatGPT answers for certain questions.
b. The ranks are fed into a reinforcement learning algorithm that learns the agent's policy.
c. The agent collects more data, and the feedback from human experts is used to refine the

agent's policy

Keeping the Decoder: Text Generation

ChatGPTWhat is GPT ? <EOQ> A

Question from the user.

■ ChatGPT uses GPT to create a conversational engine, where a user can “provide” parts
of the text generation and the neural network provides the next sentences.

■ To do so, ChatGPT has a special End of Question token (<EOQ>) that signs that this is
from where the GPT engine should generate text by itself.

■ To make ChatGPT’s (and GPT 3’s) predictions more precise and realistic, OpenAI made
use of Reinforcement Learning from Human Feedback (RLHF) along with pre-training:

a. Human annotators are tasked at ranking various ChatGPT answers for certain questions.
b. The ranks are fed into a reinforcement learning algorithm that learns the agent's policy.
c. The agent collects more data, and the feedback from human experts is used to refine the

agent's policy

Keeping the Decoder: Text Generation

ChatGPTWhat is GPT ? <EOQ> A language

Question from the user.

■ ChatGPT uses GPT to create a conversational engine, where a user can “provide” parts
of the text generation and the neural network provides the next sentences.

■ To do so, ChatGPT has a special End of Question token (<EOQ>) that signs that this is
from where the GPT engine should generate text by itself.

■ To make ChatGPT’s (and GPT 3’s) predictions more precise and realistic, OpenAI made
use of Reinforcement Learning from Human Feedback (RLHF) along with pre-training:

a. Human annotators are tasked at ranking various ChatGPT answers for certain questions.
b. The ranks are fed into a reinforcement learning algorithm that learns the agent's policy.
c. The agent collects more data, and the feedback from human experts is used to refine the

agent's policy

Keeping the Decoder: Text Generation

ChatGPTWhat is GPT ? <EOQ> A language model

Question from the user.

■ ChatGPT uses GPT to create a conversational engine, where a user can “provide” parts
of the text generation and the neural network provides the next sentences.

■ To do so, ChatGPT has a special End of Question token (<EOQ>) that signs that this is
from where the GPT engine should generate text by itself.

■ To make ChatGPT’s (and GPT 3’s) predictions more precise and realistic, OpenAI made
use of Reinforcement Learning from Human Feedback (RLHF) along with pre-training:

a. Human annotators are tasked at ranking various ChatGPT answers for certain questions.
b. The ranks are fed into a reinforcement learning algorithm that learns the agent's policy.
c. The agent collects more data, and the feedback from human experts is used to refine the

agent's policy

Keeping the Decoder: Text Generation

ChatGPTWhat is GPT ? <EOQ> A language model <EOS>

Question from the user.

Amazing Achievements of ChatGPT

■ ChatGPT (and GPT4) achieved some impressive
achievements (which you probably already know about):
● ChatGPT can create resumes, cover letters, and LinkedIn

profiles,
● It can write annual HR self-reflections and accomplishments,
● ChatGPT can generate essays, literary parodies, and

programming answers,
● It can blend actual facts with made-up ones in a biography

of a public figure or cite plausible scientific references for
papers that were never written,

● ChatGPT can hold engaging discussions, respond to
inquiries, and create original writings like stories, poems,
and essays,

● Write the text you are seeing in this slide!

GPT4 As introduced by OpenAI

http://www.youtube.com/watch?v=--khbXchTeE
http://www.youtube.com/watch?v=oc6RV5c1yd0

How popular is ChatGPT?

■ Some interesting stats about ChatGPT (as of Oct. 2023, source and more stats: here):
a. ChatGPT was launched on November 30, 2022 and crossed 1 million users in just 5 days of

launch (Instagram took 75 days) and had 100 million active users by January 2023.
b. It has 180.5 million users, generates $80 million/month revenue, and crossed over 10 billion

all-time visits in 2023. In September 2024 alone, ChatGPT got 3.1 billion website visits
c. OpenAI spends $700k every day to run ChatGPT as of August 2023.
d. As per Reuters, OpenAI generated an estimated $3.7 billion in revenue from ChatGPT in 2024,

with projections reaching $11.7 billion by 2025.
e. 43% of college students and 80% of the Fortune 500 companies are using ChatGPT in 2024.
f. OpenAI was founded by Sam Altman and Elon Musk. Microsoft invested $10 billion in 2023. It is

valued at $29 billion and is seeking a new valuation up to $90 billion due to higher revenues.
g. A 2023 survey revealed that 25% of US companies saved $50K-$70K using ChatGPT, while

11% saved over $100K.

■ Finally, here is nice video for more illustrative details on ChatGPT from OpenAI’s CTO.

https://nerdynav.com/chatgpt-statistics/#:~:text=Top%20ChatGPT%20Statistics,visits%20in%20August%202023%20itself).
https://www.youtube.com/watch?v=C_78DM8fG6E&ab_channel=TED

■ Hugging Face has a great library (and API) of pretrained
transformer models with a great tutorials (check it out here).

■ Best part: all free! You just install it:

■ There you find transformers trained for all kinds of AI tasks:
● Natural Language Processing: text classification, question

answering, summarization, translation, and text generation, etc.
● Computer Vision: classification, detection, and segmentation.
● Audio: automatic speech recognition and audio classification.
● Multimodal: table question answering, optical character

recognition, information extraction from scanned documents,
video classification, and visual question answering.

■ You can also use BERT, GPT 1 and GPT 2 there for free.

Transformers in Pytorch

pip install transformers

https://huggingface.co/docs/transformers/index

Video: ChatGPT, AI , Energy and more

http://www.youtube.com/watch?v=a2DgdsE86ts
http://www.youtube.com/watch?v=MWHN6ojlVXI
http://www.youtube.com/watch?v=YGfJeH5HRDQ
http://www.youtube.com/watch?v=MJQIQJYxey4

